Real-time tunable lasing from plasmonic nanocavity arrays
نویسندگان
چکیده
منابع مشابه
Real-time tunable lasing from plasmonic nanocavity arrays
Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasin...
متن کاملLasing action in strongly coupled plasmonic nanocavity arrays.
Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement. In co...
متن کاملTunable random lasing behavior in plasmonic nanostructures
Random lasing is desired in plasmonics nanostructures through surface plasmon amplification. In this study, tunable random lasing behavior was observed in dye molecules attached with Au nanorods (NRs), Au nanoparticles (NPs) and Au@Ag nanorods (NRs) respectively. Our experimental investigations showed that all nanostructures i.e., Au@AgNRs, AuNRs & AuNPs have intensive tunable spectral effects....
متن کاملPlasmonic Fabry-Pérot nanocavity.
We experimentally demonstrate a novel, all-plasmonic nanoscopic cavity exhibiting Q-factors up to 200 at visible frequencies. The Fabry-Pérot type resonator uses tall metallic fins that reflect up to 98% of incident surface plasmon to concentrate light within a subwavelength cavity mode. High aspect ratio metal fins, constructed using lithography and electroplating, reduce surface plasmon scatt...
متن کاملPlasmonic Nanohole Arrays for Real-Time Multiplex Biosensing
Large-scale studies of biomolecular interactions required for proteome-level investigations can benefit from a new class of emerging surface plasmon resonance (SPR) sensors: nanohole arrays and surface plasmon (SP) enhanced optical transmission. In this paper we present a real-time, label-free multiplex SPR imaging sensor in a microarray format. The system presented is built around a low-cost m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2015
ISSN: 2041-1723
DOI: 10.1038/ncomms7939